Representing Large-scale Uncertainty through Probabilistic Databases

Prithviraj Sen
Yahoo! Labs, Bangalore.

International Conference on Management of Data, 2010
(joint work with Profs. Amol Deshpande and Lise Getoor)

Introduction

- Many applications require modeling uncertainty at scale:
- Information Integration
- In the absence of primary keys, need to handle potential duplicates.
- Information Extraction
- Scraping algorithms often fail.
- Scale prevents exhaustive manual inspection.
- Sensor Networks Databases, Mobile Objects Databases
- Imprecise data, often with confidence bounds.
- Need to model with statistical models.
- Social networks, Biological networks.
- Entity Resolution, Link Prediction etc.
- Need for database systems to model uncertainty for large-scale data.

Motivating Example: Information Integration

Employee DB:

Name	Age	Salary
John Smith	39	$\$ 1200$
Adam Dole	24	$\$ 1250$
Maddy Bowen	36	$\$ 8700$

Census DB:

Name	Gender
Johnathan Smith	M
Magdalena Bowen	F
Magda Bowie	F
\ldots	\ldots
L	

Name	Gender	Age	Salary	
Johnathan Smith	M	39	$\$ 1200$	0.89
Magdalena Bowen	F	36	$\$ 8700$	0.95
Magda Bowie	F	36	$\$ 8700$	0.35
\ldots	\ldots	\ldots	\ldots	\ldots

Motivating Example: Information Extraction

Motivating Example: Sensor Networks

Sensor	Location	Time	Temperature
S_{11}	$32^{\circ}{ }^{\circ} \mathrm{N} 67^{\circ} 8^{\prime} \mathrm{E}$	$11: 59 \mathrm{pm}$	-
S_{22}	$33^{\circ} 8^{\prime} \mathrm{N} 66^{\circ} 6^{\prime} \mathrm{E}$	$12: 06 \mathrm{pm}$	$?$
S_{29}	$34^{\circ} \mathrm{N} 65^{\circ} 8^{\prime} \mathrm{E}$	$12: 10 \mathrm{pm}$	
S_{41}	$32^{\circ} 3^{\prime} \mathrm{N} 67^{\circ} 4^{\prime} \mathrm{E}$	$12: 01 \mathrm{pm}$	
\vdots	\vdots	\vdots	\vdots

Some History, Why Probabilistic and What's Out There

- Probabilistic databases. Not a recent development.
- In the 90's, proposals to build databases with IR-style querying.
- Many ways to model uncertainty through databases.
- Probabilistic databases use probability theory.
- Because they are powerful enough to represent most applications.
- While still being (relatively) practical.
- Code is available:
- SPROUT (from University of Oxford).
- MystiQ (from University of Washington).
- Trio (from Stanford).
- PrDB (soon, from University of Maryland).

Outline

(1) Semantics of Probabilistic Databases
(2) Probabilistic Correlations
(3) Graphical Models: A Primer

4 Query Evaluation
(5) Advanced Representations
(6) Lifted Inference
(7) Efficient Query Evaluation
(8) Conclusion
(9) References

Outline

(1) Semantics of Probabilistic Databases

2 Probabilistic Correlations
(3) Graphical Models: A Primer
(1) Query Evaluation
(5) Advanced Representations
(3) Lifted Inference
(7) Efficient Query Evaluation
(3) Conclusion
(9) References

Semantics of a Probabilistic Database

- A probabilistc database is a distribution over many databases.
- Independent Tuple Uncertain Database
- Let t denote an uncertain tuple and $p r(t)$ its existence probability.
- Let \mathcal{T} denote the set of tuples in our probabilistic database.
- Any $\mathbf{T} \subseteq \mathcal{T}$ is a possible world.
- Probability of possible world $W \in 2^{\mathcal{T}}$ is:

$$
\operatorname{Pr}(W) \propto \prod_{t \in W} p r(t) \prod_{t \notin W}(1-p r(t)) \quad \forall W \in 2^{\mathcal{T}}
$$

Example: Semantics of a Probabilistic Database

possible worlds

instance	probability
$\left\{s_{1}, s_{2}, t_{1}\right\}$	0.24
$\left\{s_{1}, s_{2}\right\}$	0.16^{*}
$\left\{s_{1}, t_{1}\right\}$	0.24
$\left\{s_{1}\right\}$	0.16
$\left\{s_{2}, t_{1}\right\}$	0.06
$\left\{s_{2}\right\}$	0.04
$\left\{t_{1}\right\}$	0.06
\emptyset	0.04

(Example from Dalvi and Suciu, VLDB'04.)

$$
\text { *0.8×0.5 } \times(1-0.6)
$$

Query Evaluation

- Every possible world is a "traditional" database.
- Easy to run a query q on W.
- To run query q on a probabilistic database, run q on each W.
- Marginal probability of each result tuple r is:

$$
\mu(r)=\sum_{W \in 2^{\tau}} p r(W) \delta(r \in q(W))
$$

Example: Query Evaluation Semantics

Outline

(1) Semantics of Probabilistic Databases
(2) Probabilistic Correlations
(3) Graphical Models: A Primer

4 Query Evaluation
(3) Advanced Representations
(6) Lifted Inference
(9) Efficient Query Evaluation
(8) Conclusion

- References

Example: Correlations in a Database

possible worlds
$\left\{s_{1}, s_{2}, t_{1}\right\}$
$\left\{s_{1}, s_{2}\right\}$
$\left\{s_{1}, t_{1}\right\}$
$\left\{s_{1}\right\}$
$\left\{s_{2}, t_{1}\right\}$
$\left\{s_{2}\right\}$
$\left\{t_{1}\right\}$
\emptyset

probability distribution			
ind.	implies	mutex	nxor
0.24	0	0	0.2
0.16	0.33	0.3	0.1
0.24	0	0	0.2
0.16	0.067	0.3	0.1
0.06	0	0.2	0
0.04	0	0	0.2
0.06	0.6	0.2	0
0.04	0	0	0.2
0.54	0	0.2	0.4

query
result
$\left\{r_{1}\right\}$
\emptyset
$\left\{r_{1}\right\}$
\emptyset
$\left\{r_{1}\right\}$
\emptyset
\emptyset
\emptyset

- implies: presence of t_{1} implies absence of s_{1} and $s_{2}\left(t_{1} \Rightarrow \neg s_{1} \wedge \neg s_{2}\right)$.
- mutual exclusivity (mutex): $t_{1} \Rightarrow \neg s_{1}$ and $s_{1} \Rightarrow \neg t_{1}$.
- nxor. high positive correlation between t_{1} and s_{1}, presence (absence) of one almost certainly implies the presence (absence) of the other.

Requirements of a Good Representation

- Should be parsimonious.
- The set of possible worlds is the power set of a database.
- Independence is not enough, should be able to represent correlations.
- Should be possible to evaluate queries on it.

Outline

(1) Semantics of Probabilistic Databases

C Probabilistic Correlations
(3) Graphical Models: A Primer

4 Query Evaluation
(5) Advanced Representations
(3) Lifted Inference
(7) Efficient Query Evaluation

- Conclusion
(9) References

Graphical Models and Factored Distributions

- Let X denote a random variable with a fixed-size domain $\operatorname{Dom}(X)$.
- Let $\operatorname{pr}\left(X_{1}, \ldots X_{n}\right)$ denote a joint distribution.
- Storing $\operatorname{pr}\left(X_{1}, \ldots X_{n}\right)$ in a table requires $O\left(|D o m|^{n}\right)$ doubles.

Factored Distribution

- Let \mathbf{X} denote a (small) set of random variables.
- Let $f(\mathbf{X})$ denote factor such that $0 \leq f(\mathbf{X}) \leq 1$.
- Factored representation:

$$
\operatorname{pr}\left(X_{1}, \ldots X_{n}\right)=\frac{1}{Z} \prod_{f} f\left(\mathbf{X}_{f}\right)
$$

where Z denotes the partition function

Example: Linear Chain Bayesian Network

$$
\begin{aligned}
& \operatorname{pr}\left(X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}\right)= \\
& f_{1}\left(X_{1}=x_{1}\right) f_{12}\left(X_{1}=x_{1}, X_{2}=x_{2}\right) f_{23}\left(X_{2}=x_{2}, X_{3}=x_{3}\right)
\end{aligned}
$$

Graphical Models

- Factored representations are parsimonious.
- Graphical representation encodes conditional independencies.
- e.g., $X_{3} \perp X_{1} \mid X_{2}$ in the previous example.
- Well known algorithms available (Bayes Ball, D-sep) to read off conditional independence relations from graphical representation.
- Well known flavours: Bayesian networks and Markov networks.
- Bayesian networks allow directed relationships.
- Allow non-monotonic reasoning ("explaining away").
- Factors are called conditional probability tables.
- Markov networks allow undirected relationships.
- Factors are called clique potentials.
- More general models include chain graphs and factor graphs.

Benefits of using Graphical Models

- Can represent probabilistic databases parsimoniously.
- Result tuples' probabilities are marginal probability computations.
- Inference algorithms are available.

Outline

(1) Semantics of Probabilistic Databases
(2) Probabilistic Correlations
(3) Graphical Models: A Primer
4) Query Evaluation
(5) Advanced Representations
(6) Lifted Inference
(2) Efficient Query Evaluation
(8) Conclusion

- References

Probabilistic Databases and Factors

- Represent correlations with n-ary factors.
- For independent tuple databases:
- Introduce boolean valued random variables for tuples.
- Use single argument factors to encode tuple probabilities.

$$
\forall t: \quad f_{t}(\mathrm{t})=\operatorname{pr}(t), \quad f_{t}(\mathrm{f})=1-\operatorname{pr}(t)
$$

s_{1}	A	B	0.8		A	B	0.5	t_{1}	B	C	0.6
	m	1		S_{2}	n	1			1	p	
	s_{1}	$f_{s_{1}}$			s_{2}	$f_{s_{2}}$			t_{1}	$f_{t_{1}}$	
	t	0.8			t	0.5			t	0.6	
	f	0.2			f	0.5			f	0.4	

Example: Query Evaluation with Factors

	S	
	A	B
s_{1}	m	1
s_{2}	n	1

$f_{s_{1}}, f_{s_{2}}$

$f_{t_{1}}$

Example: Query Evaluation with Factors

$f_{s_{1}}, f_{S_{2}}$
T

	B	C
	1	P

$f_{t_{1}}$

$\xrightarrow{S \bowtie_{B} T}$

Example: Query Evaluation with Factors

$f_{s_{1}}, f_{s_{2}}$

		T	
t_{1}	\mathbf{B}	\mathbf{C}	
	1	p	

$f_{t_{1}}$

${ }^{\text {||IIII }} f_{i_{1}, s_{1}, t_{1}}^{\text {and }}$

	\mathbf{A}	\mathbf{B}	\mathbf{C}
i_{1}	m	1	p
i_{2}	n	1	p

$S \bowtie_{B} T$
$\xrightarrow{\longrightarrow}$

Example: Query Evaluation with Factors

$f_{i_{1}, s_{1}, t_{1}}^{\text {and }}, f_{i_{2}, s_{2}, t_{1}}^{\text {and }}$

		A	\mathbf{B}
i_{1}	\mathbf{C}		
	m	1	p
i_{2}	n	1	p

Example: Query Evaluation with Factors

$f_{t_{1}}$

	$f_{i_{1}, s_{1}, t_{1}}^{\text {and }}, f_{i_{2}, s_{2}, t_{1}}^{\text {and }}$		
	A	B	C
i_{1}	m	1	p
i_{2}	n	1	p

$\prod_{C}\left(\mathbf{S} \bowtie_{B} \mathbf{T}\right)$

Example: Query Evaluation with Factors

$f_{t_{1}}$

$$
f_{i_{1}, s_{1}, t_{1}}^{\text {and }}, f_{i_{2}, s_{2}, t_{1}}^{\text {and }}
$$

$$
\begin{array}{l|ccc|}
\cline { 2 - 4 } & \mathbf{A} & \mathbf{B} & \mathbf{C} \\
i_{1} & \mathrm{~m} & 1 & \mathrm{p} \\
i_{2} & \mathrm{n} & 1 & \mathrm{p} \\
\cline { 2 - 4 } & &
\end{array}
$$

$$
\begin{gathered}
\prod_{\mathrm{C}}\left(\mathbf{S} \bowtie_{\mathrm{B}} \mathbf{T}\right) \\
\downarrow \\
r_{1} \begin{array}{|c}
\hline \mathbf{C} \\
\mathrm{p}
\end{array} \\
f_{r_{1}, i_{1}, i_{2}}^{\circ \mathrm{C}}
\end{gathered}
$$

r_{1}	i_{1}	i_{2}	$f_{r_{1}, i_{1}, i_{2}}^{\mathrm{or}}$
t	t	t	1
t	t	f	1
f	t	f	0
f	f	f	1
\vdots	\vdots	\vdots	\vdots

Inference and Query Evaluation

- All factors combined, base and introduced during evaluation, form a graphical model.
- To compute marginal probability of r_{1} :
- Multiply all factors.
- Sum over all random variables except r_{1}.

- Prior work has used different inference algorithms:
- variable elimination [SD07]
- inclusion-exclusion principle [BDHW06, FR97]
- ordered binary decision diagrams [KO08]
- Markov Chain Monte Carlo [RDS07, JXWPJH08]
- ...
- Inference is \#P-complete, in general.

Example: Variable Elimination

$$
\begin{aligned}
& \mu\left(r_{1}=\mathrm{t}\right)=\sum_{i_{1}, i_{2}} \sum_{s_{1}, s_{2}, t_{1}} f_{r_{1}, i_{1}, i_{2}}^{\circ \mathrm{r}}\left(r_{1}=\mathrm{t}, i_{1}, i_{2}\right) f_{i_{2}, s_{2}, t_{1}}^{\text {and }}\left(i_{2}, s_{2}, t_{1}\right) \\
& f_{i_{1}, s_{1}, t_{1}}^{\text {and }}\left(i_{1}, s_{1}, t_{1}\right) f_{t_{1}}\left(t_{1}\right) f_{s_{2}}\left(s_{2}\right) f_{s_{1}}\left(s_{1}\right) \\
& =\sum_{i_{1}, i_{2}} f_{r_{1}, i_{1}, i_{2}}^{\circ \circ}\left(r_{1}=\mathrm{t}, i_{1}, i_{2}\right) \sum_{s_{2}, t_{1}} f_{i_{2}, s_{2}, i_{1}}^{\text {and }}\left(i_{2}, s_{2}, t_{1}\right) \\
& f_{t_{1}}\left(t_{1}\right) f_{s_{2}}\left(s_{2}\right) \underbrace{\sum_{s_{1}} f_{i_{1}, s_{1}, t_{1}}^{\text {and }}\left(i_{1}, s_{1}, t_{1}\right) f_{s_{1}}\left(s_{1}\right)}_{m_{s_{1}}\left(i_{1}, t_{1}\right)} \\
& m_{s_{1}}\left(i_{1}, t_{1}\right)=\begin{array}{cc|c}
i_{1} & t_{1} & m_{s_{1}} \\
\hline \mathrm{f} & \mathrm{f} & 1 \\
\mathrm{t} & \mathrm{f} & 0 \\
\mathrm{f} & \mathrm{t} & 0.2 \\
\mathrm{t} & \mathrm{t} & 0.8
\end{array}
\end{aligned}
$$

Example: Variable Elimination (contd.)

$$
\begin{aligned}
& \mu\left(r_{1}\right.=\mathrm{t}) \\
&=\sum_{i_{1}, i_{2}} f_{r_{1}, i_{1}, i_{2}}^{\circ \mathrm{r}}\left(r_{1}=\mathrm{t}, i_{1}, i_{2}\right) \sum_{t_{1}} m_{s_{1}}\left(i_{1}, t_{1}\right) f_{t_{1}}\left(t_{1}\right) \underbrace{\sum_{i_{2}, s_{2}, t_{1}}\left(i_{2}, s_{2}, t_{1}\right) f_{s_{2}}\left(s_{2}\right)}_{m_{s_{2}}\left(i_{2}, t_{1}\right)} \\
&=\sum_{i_{1}, i_{2}}^{\text {and }} f_{r_{1}, i_{1}, i_{2}}^{\circ \mathrm{r}}\left(r_{1}=\mathrm{t}, i_{1}, i_{2}\right) \underbrace{\sum_{t_{1}} m_{s_{1}}\left(i_{1}, t_{1}\right) f_{t_{1}}\left(t_{1}\right)}_{m_{t_{1}}\left(i_{1}, i_{2}\right)}{m_{s_{2}}\left(i_{2}, t_{1}\right)} \\
&=\sum_{i_{1}}^{\sum_{i_{2}} f_{r_{1}, i_{1}, i_{2}}^{\circ r}\left(r_{1}=\mathrm{t}, i_{1}, i_{2}\right) m_{t_{1}}\left(i_{1}, i_{2}\right)} \\
&=\sum_{i_{1}} m_{i_{i_{2}}}\left(i_{1}\right) \\
&=0.54
\end{aligned}
$$

Example: Inference with Base Correlations 1

- $\left(t_{1} \Rightarrow \neg s_{1} \wedge \neg s_{2}\right)$

$$
\begin{aligned}
\mu\left(r_{1}=\mathrm{t}\right)= & \sum_{i_{1}, i_{2}} f_{r_{1}, i_{1}, i_{2}}^{\text {or }}\left(r_{1}=\mathrm{t}, i_{1}, i_{2}\right) \sum_{s_{2}, t_{1}} f_{i_{2}, s_{2}, t_{1}}^{\text {and }}\left(i_{2}, s_{2}, t_{1}\right) \\
& \sum_{s_{1}} f_{i_{1}, s_{1}, t_{1}}^{\text {and }}\left(i_{1}, s_{1}, t_{1}\right) f_{t_{1}, s_{1}}^{\text {implies }}\left(t_{1}, s_{1}\right) f_{t_{1}, s_{2}}^{\text {implies }}\left(t_{1}, s_{2}\right) f_{t_{1}}\left(t_{1}\right)
\end{aligned}
$$

t_{1}	s_{1}	$f_{t_{1}, s_{1}}^{\text {implies }}$
f	f	0
f	t	1
t	f	1
t	t	0
t_{1}	$\mathrm{~s}_{2}$	$f_{t_{1}, s_{2}}^{\text {implies }}$
f	f	$1 / 6$
f	t	$5 / 6$
t	f	1
t	t	0

instance	probability
$\left\{s_{1}, s_{2}, t_{1}\right\}$	0
$\left\{s_{1}, s_{2}\right\}$	0.33
$\left\{s_{1}, t_{1}\right\}$	0
$\left\{s_{1}\right\}$	0.067
$\left\{s_{2}, t_{1}\right\}$	0
$\left\{s_{2}\right\}$	0
$\left\{t_{1}\right\}$	0.6
\emptyset	0

Example: Inference with Base Correlations 2

- $\left(t_{1} \Rightarrow \neg s_{1}, s_{1} \Rightarrow \neg t_{1}\right)$

$$
\begin{aligned}
\mu\left(r_{1}=\mathrm{t}\right)= & \sum_{i_{1}, i_{2}} f_{r_{1}, i_{1}, i_{2}}^{\circ \mathrm{r}}\left(r_{1}=\mathrm{t}, i_{1}, i_{2}\right) \sum_{s_{2}, t_{1}} f_{i_{2}, s_{2}, t_{1}}^{\text {and }}\left(i_{2}, s_{2}, t_{1}\right) \\
& \sum_{s_{1}} f_{i_{1}, s_{1}, i_{1}}^{\text {and }}\left(i_{1}, s_{1}, t_{1}\right) f_{t_{1}, s_{1}}^{\text {mutex }}\left(t_{1}, s_{1}\right) f_{s_{2}}\left(s_{2}\right)
\end{aligned}
$$

t_{1}	s_{1}	$f_{t_{1}, s_{1}}^{\text {mutex }}$
f	f	0
f	t	0.6
t	f	0.4
t	t	0

instance	probability
$\left\{s_{1}, s_{2}, t_{1}\right\}$	0
$\left\{s_{1}, s_{2}\right\}$	0.3
$\left\{s_{1}, t_{1}\right\}$	0
$\left\{s_{1}\right\}$	0.3
$\left\{s_{2}, t_{1}\right\}$	0.2
$\left\{s_{2}\right\}$	0
$\left\{t_{1}\right\}$	0.2
\emptyset	0
0.2	

Example: Inference with Base Correlations 3

- (positive correlation between s_{1} and t_{1})

$$
\begin{aligned}
\mu\left(r_{1}=\mathrm{t}\right)= & \sum_{i_{1}, i_{2}} f_{r_{1}, i_{1}, i_{2}}^{\circ \mathrm{r}}\left(r_{1}=\mathrm{t}, i_{1}, i_{2}\right) \sum_{s_{2}, t_{1}} f_{i_{2}, s_{2}, t_{1}}^{\text {and }}\left(i_{2}, s_{2}, t_{1}\right) \\
& \sum_{s_{1}} f_{i_{1}, s_{1}, i_{1}}^{\text {and }}\left(i_{1}, s_{1}, t_{1}\right) f_{t_{1}, s_{1}}^{n \times o r}\left(t_{1}, s_{1}\right) f_{s_{2}}\left(s_{2}\right)
\end{aligned}
$$

			instance	probability
		$\left\{s_{1}, s_{2}, t_{1}\right\}$	0.2	
t_{1}	s_{1}	$f_{t_{1}, s_{1}}^{n \times o r}$	$\left\{s_{1}, s_{2}\right\}$	0.1
f	f	0.4	$\left\{s_{1}, t_{1}\right\}$	0.2
f	t	0.2	$\left\{s_{1}\right\}$	0.1
t	f	0	$\left\{s_{2}, t_{1}\right\}$	0
t	t	0.4	$\left\{s_{2}\right\}$	0.2
		$\left\{t_{1}\right\}$	0	
\emptyset	0.2			

Outline

(1) Semantics of Probabilistic Databases

C Probabilistic Correlations
(3) Graphical Models: A Primer
(2) Query Evaluation
(5) Advanced Representations
(6) Lifted Inference
(7) Efficient Query Evaluation
(3) Conclusion
(9) References

- Till now, we have been talking about random variables and factors.
- For many applications, this level of detail may be unnecessary.
- Because, uncertainty comes from general statistics, is rarely tuple-specific.

AdID	Make	Color		Color	$f_{\text {color }}$
	Make	Color	Price	Black	0.75
1	Honda	?	9,000\$	Beige	0.25
2	?	?	6,000\$		
3	?	Beige	8,000\$	Make	$f_{\text {make }}$
				Honda	0.55
				Toyota	0.45

Statistical Relational Learning

- Devoted to building large-scale graphical models.
- Use first-order logic (or a suitable subset) to express uncertainty.
- Various approaches: Markov logic networks, probabilistic relational models, Bayesian logic programs, independent choice logic etc.
e.g.: Markov logic networks (http://alchemy.cs.washington.edu/)

Friend-of

Name	Friends With
Bob	John
Charlie	Anton
Julie	Cosmo
\vdots	\vdots

Smokes

Name	Smokes
Bob	$?$
John	$?$
Charlie	$?$
\vdots	\vdots

$\forall X, Y, \quad \operatorname{Friend}(X, Y) \wedge \operatorname{Smokes}(X) \Rightarrow \operatorname{Smokes}(Y) \quad 1.5$

$$
\forall X, \quad \operatorname{Smokes}(X) \quad-1.1
$$

- One approach to inference with shared factors is propositionalizing.
- Propositionalizing builds the ground graphical model.
- Flattens out all the shared correlations.
- Second approach is lifted inference.
- Attempts to exploit the symmetry in shared correlations.
- Coupled with the fact that shared correlations are introduced during query evaluation too \Rightarrow lifted inference can be much more efficient than propositionalizing.

Outline

(1) Semantics of Probabilistic Databases
(2) Probabilistic Correlations
(3) Graphical Models: A Primer

- Query Evaluation
(5) Advanced Representations
(6) Lifted Inference
(7) Efficient Query Evaluation
(8) Conclusion
- References

Example: Shared Correlations

S				possible world	probability	
	A	B	0.8	$\left\{s_{1}, s_{2}, s_{3}, t_{1}\right\}$	0.192	
s_{1}	a_{1}	B		$\left\{s_{1}, s_{2}, s_{3}\right\}$	0.192	
$s_{2}$$s_{3}$	a_{2}	1	0.8	$\left\{s_{1}, s_{2}, t_{1}\right\}$	0.128	
	${ }^{\text {a }}$	1		$\left\{s_{1}, s_{2}\right\}$	0.128	
	a_{3}		0.6	$\left\{s_{1}, s_{3}, t_{1}\right\}$	0.048	
t_{1}			0.5	$\left\{s_{1}, s_{3}\right\}$	0.048	
	B	C		$\left\{s_{1}, t_{1}\right\}$	0.032	
	1	c		$\left\{s_{1}\right\}$	0.032	
t_{1}	$S \bowtie_{\mathrm{B}} T$			$\left\{s_{2}, s_{3}, t_{1}\right\}$	0.048	
				$\left\{s_{2}, s_{3}\right\}$	0.048	
				$\left\{s_{2}, t_{1}\right\}$	0.032	
		B			$\left\{s_{2}\right\}$	0.032
Produces 3 result tuples:				$\left\{s_{3}, t_{1}\right\}$	0.012	
$i_{j} \leftarrow s_{j} \bowtie t_{1}, \forall j=1,2,3$				$\left\{s_{3}\right\}$ $\left\{t_{1}\right\}$	0.012 0.008	
				\emptyset	0.008	

Example: Shared Correlations and Query Evaluation

- Inference required:

$$
\begin{aligned}
& \mu\left(i_{1}\right)=\sum_{s_{1}, t_{1}} f_{s_{1}}\left(s_{1}\right) f_{t_{1}}\left(t_{1}\right) f_{i_{1}}^{\text {and }}\left(i_{1}, s_{1}, t_{1}\right) \\
& \mu\left(i_{2}\right)=\sum_{s_{2}, t_{1}} f_{s_{2}}\left(s_{2}\right) f_{t_{1}}\left(t_{1}\right) f_{i_{2}}^{\text {and }}\left(i_{2}, s_{2}, t_{1}\right) \\
& \mu\left(i_{3}\right)=\sum_{s_{3}, t_{1}} f_{s_{3}}\left(s_{3}\right) f_{t_{1}}\left(t_{1}\right) f_{i_{3}}^{\text {and }}\left(i_{3}, s_{3}, t_{1}\right)
\end{aligned}
$$

Example: Shared Correlations and Inference

$$
\begin{aligned}
& \mu\left(i_{1}\right)=\sum_{t_{1}} f_{t_{1}}\left(t_{1}\right) \underbrace{\sum_{s_{1}} f_{s_{1}}\left(s_{1}\right) f_{i_{1}}^{\text {and }}\left(i_{1}, s_{1}, t_{1}\right)}_{m_{s_{1}}\left(i_{1}, t_{1}\right)} \\
& \mu\left(i_{2}\right)=\sum_{t_{1}} f_{t_{1}}\left(t_{1}\right) \underbrace{\sum_{s_{2}} f_{s_{2}}\left(s_{2}\right) f_{i_{2}}^{\text {and }}\left(i_{2}, s_{2}, t_{1}\right)}_{m_{s_{2}}\left(i_{2}, t_{1}\right)}
\end{aligned}
$$

- Two factors f_{1} and f_{2} are shared (or $f_{1} \cong f_{2}$) if they consist of the same input-output mappings.

f	f	1
f	t	0.2
t	f	0
t	t	0.8

Random Variable Elimination Graph

Shared Factors

$-f_{s_{1}}\left(s_{1}\right) \cong f_{s_{2}}\left(s_{2}\right) \not \approx f_{s_{3}}\left(s_{3}\right):$

s_{1}	$f_{s_{1}}$
t	0.8
f	0.2

s_{2}	$f_{s_{2}}$
t	0.8
f	0.2

s_{3}	$f_{s_{3}}$
t	0.6
f	0.4

- $m_{s_{1}}\left(i_{1}, t_{1}\right) \cong m_{s_{2}}\left(i_{2}, t_{1}\right)$:

i_{1}	t_{1}	$m_{s_{1}}$
t	t	0.8
t	f	0
f	t	0.2
f	f	1

i_{2}	t_{1}	$m_{s_{2}}$
t	t	0.8
t	f	0
f	t	0.2
f	f	1

Compressing RV-Elim Graphs

- $f_{1} \cong f_{2}$ if parents are shared, and labels match.

Details

- Final inference algorithm is a three-stage approach:

1 Detect shared factors in the rv-elim graph.
2 Run inference on the compressed rv-elim graph.
3 Retrieve relevant marginals.

- Computing " \cong " is closely related to bisimulation [KS83].
- RV-Elim graphs are DAGs.
- Fast bisimulation algorithms available for DAGs [DPP01].
- Our algorithm runs in $O(|E| \log D+|V|)$ time.

Lifted Inference: Scalability

Sample RV-Elim graphs

Outline

(1) Semantics of Probabilistic Databases

C Probabilistic Correlations
(3) Graphical Models: A Primer
(2) Query Evaluation
(5) Advanced Representations
(8) Lifted Inference
(7) Efficient Query Evaluation
(8) Conclusion
(9) References

Example: Boolean Formulas

Example: Boolean Formulas

Example: Boolean Formulas

Example: Boolean Formulas

t_{1}| \mathbf{T} | |
| :---: | :---: |
| | \mathbf{B} |
| 1 | \mathbf{C} |
| 1 | P |t_{1}

Example: Boolean Formulas

Example: Boolean Formulas

Example: Boolean Formulas

- Boolean formulas are restricted graphical models.
- For querying independent tuples, boolean formulas suffice.

Hierarchical Queries

- r_{1} 's boolean formula has a special property:

$$
s_{1} t_{1}+s_{2} t_{1}=t_{1}\left(s_{1}+s_{2}\right)
$$

- Easy to compute marginal probabilities from factorized formulas.
- Hierarchical queries [DS04] always give factorized formulas.
- Form a well defined subclass of relational algebra.

Definition of Hierarchical Queries

- Let subgoals of an attribute denote the relations it is present in.

$$
\begin{gathered}
q(\mathbf{C}):-\mathbf{S}(\mathbf{A}, \mathbf{B}), \mathbf{T}(\mathbf{B}, \mathbf{C}) \\
\operatorname{sg}(\mathbf{A})=\{\mathbf{S}\} \\
\operatorname{sg}(\mathbf{B})=\{\mathbf{S}, \mathbf{T}\}
\end{gathered}
$$

- Hierarchical query: For any two attributes a, b
- $\operatorname{sg}(a) \subseteq \operatorname{sg}(b)$ or
- $\operatorname{sg}(a) \supseteq \operatorname{sg}(b)$ or
- $\operatorname{sg}(a) \cap \operatorname{sg}(b)=\emptyset$
- In the previous example: $\operatorname{sg}(\mathbf{A})=\{\mathbf{S}\} \subset\{\mathbf{S}, \mathbf{T}\}=\operatorname{sg}(\mathbf{B})$

A non-hierarchical query

- Non-hierarchical query:

$$
q():-\mathcal{X}(\mathbf{X}), \mathcal{Z}(\mathbf{X}, \mathbf{Y}), \mathcal{Y}(\mathbf{Y})
$$

- Because:

$$
\begin{aligned}
& \operatorname{sg}(\mathbf{X})=\{\mathcal{X}, \mathcal{Z}\} \\
& \operatorname{sg}(\mathbf{Y})=\{\mathcal{Z}, \mathcal{Y}\}
\end{aligned}
$$

- Therefore:

$$
\begin{gathered}
\operatorname{sg}(\mathbf{X}) \nsubseteq \nsupseteq \operatorname{sg}(\mathbf{Y}) \\
\operatorname{sg}(\mathbf{Y}) \cap \operatorname{sg}(\mathbf{X})=\{\mathcal{Y}\}
\end{gathered}
$$

- Well known hard query, can be used to count satisfying assignments of any 2-DNF [DS04].

Drawbacks of Hierarchical Queries

- Does not consider the database.
- Originally defined for conjunctive queries, no self-joins.
- Original formulation was strictly meant for equality predicates only.
- Later, extensions for inequality predicates [OH08, OH09], self-joins [DSS10].

Example(s)

$q():-\mathcal{X}(\mathbf{X}), \mathcal{Z}(\mathbf{X}, \mathbf{Y}), \mathcal{Y}(\mathbf{Y})$

Example(s)

$$
\begin{aligned}
& q(): \mathcal{X}(\mathbf{X}), \mathcal{Z}(\mathbf{X}, \mathbf{Y}), \mathcal{Y}(\mathbf{Y}) \\
& r=x_{1} z_{1} y_{1}+x_{1} z_{2} y_{2}+x_{2} z_{3} y_{3}+x_{2} z_{4} y_{4}
\end{aligned}
$$

Example(s)

$q():-\mathcal{X}(\mathbf{X}), \mathcal{Z}(\mathbf{X}, \mathbf{Y}), \mathcal{Y}(\mathbf{Y})$

$$
\begin{aligned}
r & =x_{1} z_{1} y_{1}+x_{1} z_{2} y_{2}+x_{2} z_{3} y_{3}+x_{2} z_{4} y_{4} \\
& =x_{1}\left(z_{1} y_{1}+z_{2} y_{2}\right)+x_{2}\left(z_{3} y_{3}+z_{4} y_{4}\right)
\end{aligned}
$$

Example(s)

$$
\begin{aligned}
& q():-\mathcal{X}(\mathbf{X}), \mathcal{Z}(\mathbf{X}, \mathbf{Y}), \mathcal{Y}(\mathbf{Y})
\end{aligned}
$$

Example(s)

$$
\begin{aligned}
& q(): \mathcal{X}(\mathbf{X}), \mathcal{Z}(\mathbf{X}, \mathbf{Y}), \mathcal{Y}(\mathbf{Y}) \\
& r=x_{1} z_{1} y_{1}+x_{1} z_{2} y_{2}+x_{2} z_{3} y_{2} \\
& =\text { Not factorizable }
\end{aligned}
$$

Example(s)

$$
\begin{aligned}
& q(): \mathcal{X}(\mathbf{X}), \mathcal{Z}(\mathbf{X}, \mathbf{Y}), \mathcal{Y}(\mathbf{Y}) \\
& r=x_{1} z_{1} y_{1}+x_{1} z_{2} y_{2}+x_{2} z_{3} y_{3}+x_{3} z_{4} y_{3}
\end{aligned}
$$

Example(s)

$$
\begin{aligned}
& q(): \mathcal{X}(\mathbf{X}), \mathcal{Z}(\mathbf{X}, \mathbf{Y}), \mathcal{Y}(\mathbf{Y}) \\
& r=x_{1} z_{1} y_{1}+x_{1} z_{2} y_{2}+x_{2} z_{3} y_{3}+x_{3} z_{4} y_{3} \\
& =x_{1}\left(z_{1} y_{1}+z_{2} y_{2}\right)+y_{3}\left(x_{2} z_{3}+x_{3} z_{4}\right)
\end{aligned}
$$

Query Evaluation with Factorized Formulas

- Hierarchical queries are great.
- Even better: involve the database while deciding tractability.
- One step further: query evaluation with factorized formulas.
- Algorithms to determine factorizability are available.
- However, these are expensive.
- Possible to factorize faster for conjunctive queries without self-joins.
- No restrictions on join predicates.

Read-once functions [GMR06]

- Factorized form: Each variable appears at most once.
- Factorizable boolean formulas are also known as read-once functions.
- The factorized form of a formula, is called its read-once expression.
- Read-once expressions are traditionally represented using co-trees.

Three Properties of Read-Once Functions

- [Unateness] No variable appears in both positive and negated forms
xy
is unate
$\bar{x} y+\bar{x} z$
is unate

$$
\bar{x} y+x z
$$

is not unate

- [P_{4}-free] Co-occurrence graph should be P_{4}-free

$x y+y z+z w$ has a P_{4}
$z(x y+w)$ is P_{4}-free

- [Normality] Each clique should be contained in some clause
$x y z$
is normal

$$
x y+y z+x z
$$

is not normal

Limitations of factorization algorithms [GMR06]

- Given ϕ, let $G_{\phi}=(V, E)$ denote its co-occurrence graph

$$
\begin{aligned}
\text { Time complexity } & =\text { Unateness }+P_{4} \text {-free }+ \text { Normality } \\
& =O(|\phi|)+O(|V|+|E|)+O(|\phi||V|)
\end{aligned}
$$

- Normality check is expensive
- P_{4}-check requires DNF or co-occurrence graph
- Conversion to DNF may require $O\left(n^{k}\right)$ operations, where n is \#tuples and k is \#joins.

Our goals:

- Avoid performing expensive checks
- Avoid building co-occurrence graph or the DNF

Is possible for conjunctive queries without self-joins.

P_{4}-checking without DNFs

2-phase approach to factorizing:

- $1^{\text {st }}$ phase builds lineage-trees for result tuples.
- $2^{\text {nd }}$ phase recursively builds factorized expression from lineage-tree.
- $2^{\text {nd }}$ phase uses a tree alignment operator \oplus.
- Conceptually, $T_{1} \oplus T_{2}$ computes $\phi\left(T_{1}\right) \vee \phi\left(T_{2}\right)$.

Example: Building Co-Trees

$$
\begin{aligned}
& T_{0}=T_{1} \oplus T_{2} \oplus T_{3} \\
& T_{3}=T\left[\bowtie \left(\pi \left(\bowtie\left(x_{2}, z_{3}\right),\right.\right.\right. \\
& \left.\left.\left.\bowtie\left(x_{3}, z_{4}\right)\right), y_{3}\right)\right] \\
& =\text { (1)(0)(1) }\left(x_{2}, z_{3}\right) \text {, } \\
& \text { (1) } \left.\left.\left(x_{3}, z_{4}\right)\right), y_{3}\right)
\end{aligned}
$$

Experiments: Synthetic data

Experiments: TPC-H

Outline

(1) Semantics of Probabilistic Databases
(2) Probabilistic Correlations
(3) Graphical Models: A Primer

- Query Evaluation
(5) Advanced Representations
(3) Lifted Inference
(7) Efficient Query Evaluation
(8) Conclusion
(9) References
- Lots of people have done lots of very diverse work in this field.
- Alternate representations:
- x-tuples (Trio)
- world set decomposition (SPROUT/MayBMS)
- block independent disjoint (MystiQ)
- conditional random fields (BayesStore)
- And/Or trees
- more?
- Query evaluation:
- Inequality Predicates
- Queries with Self-Joins
- Approximate Query Evaluation
- Inference based on Improved Sampling
- Indexing for large Junction Trees
- Each has its own pros and cons.
- Lots of open questions.
- Ranking Queries.
- Continuous-valued Attributes.
- Ranking over Continuous-valued Attributes.
- Time-varying attributes.
- Query Languages based on Secord-order Logic.
- Mobile Object Databases.
- Privacy and Security.
- Improving the Quality of a Probabilistic Database.

Outline

(1) Semantics of Probabilistic Databases
(2) Probabilistic Correlations
(3) Graphical Models: A Primer

- Query Evaluation
(5) Advanced Representations
(3) Lifted Inference
(7) Efficient Query Evaluation
(3) Conclusion
(9) References
[BDHW06] Omar Benjelloun, Anish Das Sarma, Alon Halevy and Jennifer Widom. ULDBs: Databases with Uncertainty and Lineage.
In VLDB, 2006.
[DSS10] Nilesh N. Dalvi, Karl Schnaitter and Dan Suciu
Computing query probability with incidence algebras.
In PODS, 2010.
[DS04] Nilesh Dalvi and Dan Suciu.
Efficient Query Evaluation on Probabilistic Databases.
In VLDB, 2004.
[DGS08] Amol Deshpande, Lise Getoor and Prithviraj Sen. Graphical Models for Uncertain Data.
In Managing and Mining Uncertain Data, Charu Aggarwal (ed.), Springer, 2008.
[DPP01] Agostino Dovier, Carla Piazza and Alberto Policriti.
A Fast Bisimulation Algorithm.
In International Conference on Computer Aided Verification, 2001.
[FR97] Norbert Fuhr and Thomas Rolleke.
A probabilistic relational algebra for the integration of information retrieval and database systems.
In Transactions on Information Systems, 1997.
[GFKT02] L. Getoor, N. Friedman, D. Koller and B. Taskar.
Learning probabilistic models with link uncertainty.
In JMLR, 2002.
[GMR06] M. Golumbic, A. Mintz and U. Rotics.
Factoring and Recognition of Read-Once Functions Using Cographs and Normality and the Readability of Functions Associated with Partial k-Trees.
In Discrete Applied Mathematics, 2006.
[JXWPJH08] Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christopher M. Jermaine and Peter J. Haas.
MCDB: A monte carlo approach to managing uncertain data.
In SIGMOD, 2008.
[KS83] Paris Kanellakis and Scott Smolka.
CCS expressions, finite state processes, and three problems of equivalence.
In PODC, 1983.
[KO08] Christoph Koch and Dan Olteanu.
Conditioning probabilistic databases.
In VLDB, 2008.
[OH09] Dan Olteanu and Jiewen Huang.
Secondary-storage confidence computation for conjunctive queries with inequalities.
In SIGMOD, 2009.
[OH08] Dan Olteanu and Jiewen Huang.
Using OBDDs for Efficient Query Evaluation on Probabilistic Databases.
In SUM, 2008.
[Poole03] David Poole.
First-order probabilistic inference.
In IJCAI, 2003.
[RDS07] Christopher Re, Nilesh Dalvi and Dan Suciu.
Efficient Top-k Query Evaluation on Probabilistic Data.
In ICDE, 2007.
[RD06] Matthew Richardson and Pedro Domingos.
Markov Logic Networks.
In Machine Learning, 2006.
[SD07] Prithviraj Sen and Amol Deshpande.
Representing and Querying Correlated Tuples in Probabilistic Databases.
In ICDE, 2007.
[SDG08] Prithviraj Sen, Amol Deshpande and Lise Getoor.
Exploiting Shared Correlations in Probabilistic Databases.
In VLDB, 2008.
[SDG09] Prithviraj Sen, Amol Deshpande and Lise Getoor.
Bisimulation-based Approximate Lifted Inference.
In UAI, 2009
[SDG09] Prithviraj Sen, Amol Deshpande and Lise Getoor.
PrDB: Managing and Exploiting Rich Correlations in Probabilistic Databases.
In VLDB Journal, 2009.
[SDG10] Prithviraj Sen, Amol Deshpande and Lise Getoor. Read-Once Functions and Query Evaluation in Probabilistic Databases.
In VLDB, 2009.
[SDG07] Prithviraj Sen, Amol Deshpande and Lise Getoor. Representing Tuple and Attribute Uncertainty in Probabilistic Databases.
In DUNE (ICDM), 2007.

Thank you.

